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I. Statement of Work

The Air Mobility Command at Scott Air Force Base has a group of operations research
analysts who develop and run mathematical programming models for the Command.
Two of their most famous models are the Patient Evacuation Model and the LOGAIR
Model. The problem generator for the Patient Evacuation Model has been placed in
the public domain and all of the major mathematical programming software groups
have tested their software on these models.

Both of these Air Force models involve a large network with additional side
constraints. For one model the side constraints describe the capacity of an aircraft
which is shared by patients having different injury types. A burn victim may be destined
for the burn center in San Antonio where as a soldier with a head injury may be enroute
to the Mayo Clinic. For the other model, the side constraints enforce aircraft capacity
for cargo sharing the same aircraft but having different origins. That is, cargo that
originated at Tinker AFB and cargo that originated at Wright- Patterson AFB may end
up on the same aircraft enroute to England, but this cargo must maintain its own
identity while on this aircraft so that it will arrive at the proper destination. This is
handled by separate networks for each origin node which are linked by mutual capacity
constraints. In addition, the clients frequently need integer answers.

CPLEX 3.0 has excellent capabilities, but there are many problems in this class that
cause great difficulty for even CPLEX. The author recently ran one of these models for
over 10 hours of cpu time on a Dec 5000/260 without obtaining a confirmed optimal
solution. It appears, at present, that the only hope for developing robust software for
some of these models is to exploit the underlying network structure.

There are two manuscripts presented in this final report. The first concerns a special
algorithm and software implementation for the constrained assignment problem. The
second fills in a gap in the literature regarding pivot agenda algorithms when the input
matrix is singular. Both of these papers are steps in our long term quest to solve the
integer constrained network problem.
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1I. A Branch- and- Bound Algorithm

* The constrained assignment problem is to determine a least cost assignment of m men
to n jobs such that an additional set of linear constraints is satisfied. This model is a
special case of the integer network model with side constraints which in turn is a special
case of the binary linear program. This problem is a member of the class NP - Hard and
it is well-known that practical problems in this class are intractable. Air Force
problems related to the assignment of pilots to schedules and the assignment of aircraft
tail numbers to routes can be modelled as constrained assignment problems.

The constraint matrix for the pure network problem without the side constraints has
this wonderful property of being totally unimodular. Hence, every basis has
determinate equal + 1 or -1, every basis is triangular, and every extreme point has
integer components. This problem is a member of the class P and is relatively easy to
solve. By appending only a single side constraint, the unimodularity property is lost,
bases are not triangular, extreme points may not be integer, and the problem is a
member of the class NP-Hard. Unfortunately, almost all real-world problems have
one or more side constraints. For Air Force models, it is common to have some type of
aircraft capacity or budget constraint.

The objective of this study was to develop and empirically evaluate a new algorithm for
this model. The algorithm relies on the branch - and - bound strategy and is designed
for problems having a large network and a limited number of side-constraints. It
exploits an algorithm that we developed earlier for the assignment problem having a
single side constraint. This work uses an excellent assignment code that our research
team developed and handles the side constraint via the use of Lagrangean relaxation.

The paper resulting from this study appears in Appendix A of this report. It has been
-- submitted for publication and is currently under review.

-2-
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III. Recovery from Numerical Instability

In my opinion, the best technique available for solving constrained networks is to use a
simplex based algorithm in which the basis is partitioned into two parts, one part
associated with the network constraints, and one part associated with the side
constraints. The component associated with the network part can be maintained as a
rooted spanning tree and all operations involving the inverse of this component can be
executed using specialized labeling algorithms. Another component, corresponding to
the side constraints is called the working basis. It is the inverse of this working matrix
which is needed for the operations required by the simplex method.

In our system, the inverse of this working basis is maintained in factored form and every
pivot involves the addition of either one or two new factors to the eta file. Periodically,
say every 50 to 100 pivots, the working basis is reinverted and a new eta file is developed.
The new eta file is smaller than the old one and much of the round- off error which has
been introduced during the previous pivots will have been eliminated.

The first step in the procedure to obtain a new factorization is to determine a
permutation of the rows and columns so that the sparsity property of this matrix will be
maintained in the factorization of its inverse. In the literature, the permutation of the
basis is known as the pivot agenda and there are several algorithms for obtaining a good
pivot agenda. All pivot agenda algorithms assume that the input matrix is nonsingular.

In our work with specialized partitioning methods for networks with side constraints,
we discovered that due to the nature of the side constraints a singular input matrix
would eventually be presented to the pivot agenda algorithm. When this occurs, all of
the pivot agenda algorithms, of which we are aware, fail. The objective of our
investigation was to present recovery procedures, using a variation of the
Hellerman - Rarick P3 algorithm, for the case in which the input matrix is singular. The
results of our investigation are presented in Appendix B of this document which has
been submitted for publication and is currently under review.
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ABSTRACT

This manuscript presents a branch-and-bound algorithm to obtain a near

optimal solution for the constrained assignment problem in which there are only a

few side constraints. At each node of the branch-and-bound tree a lower bound is

obtained by solving a singly constrained assignment problem. If needed, Lagran-

gean relaxation theory is applied in an attempt to improve this lower bound. A

specialized branching rule is developed which exploits the requirement that every

man be assigned to some job. A software implementation of the algorithm has

been tested on problems with five side constraints and up to 75,000 binary vari-

ables. Solutions guaranteed to be within 10% of an optimum were obtained for

these 75,000 variable problems in from two to twenty minutes of CPU time on a

Dec Alpha workstation. We believe that this is the current best algorithm and

software implementation for the constrained assignment problem having a limited

number of side constraints. The behavior of the branch-and-bound algorithm for

various problem characteristics was also studied. This included the tightness of the

side constraints, the stopping criteria, and the effect when the problems are unbal-

anced having more jobs than men.
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I. INTRODUCTION

The constrained assignment problem is to determine a least cost assignment

of m men to n jobs such that an additional set of constraints is satisfied. This

model is a binary linear program and may be stated mathematically as follows:

minimize cijxij (1)
(i, j) E A

subject to xi 1 , i=....m (2)
j: (i,j) E A

I xij <5 1, jl ... ,n (3)
i: (i,j) E A

Xij E {0,1}, all (i,j) E A (4)

2 dkxii r rk, k l..s (5)
(i, j) E A

where xij = 1 implies that man i is assigned to job j at cost of cij, dý denotes the

coefficient of xij in the kth side constraint, rk denotes the right-hand-side for the

kth side constraint, and A is the set corresponding to the feasible assignments.

Note that the problem allows for more jobs than men. Many practical problems

have this feature. It also allows for the case in which the number of men exceeds

the number of jobs. For this case, one simply reverses the definition of men and

jobs.

A-3
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Since (1)-(5) is a binary linear program, all the literature on integer pro-

gramming applies (see Geoffrion and Marsten [5], Salkin [121, Parker and Rardin

[11], Nemhauser and Wolsey [101). In practice most integer programming models

are either solved as a linear program and the solutions are rounded using some

heuristic or branch-and-bound is used in an attempt to obtain a solution within a

prespecified tolerance.

A special case in which the side constraints have the generalized upper bound

(GUB) structure has been studied by Ali, Kennington, and Liang [2]. A relaxation/

decomposition procedure that involves solving a series of pure assignment prob-

lems is used successfully. Ball, Derigs, Hilbrand, and Metz (31 also present an

algorithm for the matching problem with generalized upper bound side constraints.

Another special case for s=1 and m=n has been studied by Gupta and Sharma

[6], Aggarwal [1], Mazzola and Neebe (91, Bryson [4], Kennington and Moham-

madi [7,8]. The only specialized algorithm for (1)-(5) is the two phase procedure

of Mazzola and Neebe [9]. The first phase uses subgradient optimization to obtain

an advanced start for the branch-and-bound method used in the second phase.

The objective of this study was to develop a new branch-and-bound algo-

rithm to solve the constrained assignment problem and to provide an empirical

analysis of this algorithm on a variety of assignment problems having only a few

side constraints. All empirical analysis was performed on problems having five

side constraints.

A- 4
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IH. "1HE BRANCH-AND-BOUND ALGORITHM

The branch-and-bound method can be viewed as a divide and conquer strat-

egy. Tf a problem cannot be solved, then it is partitioned into several smaller prob-

lems. The best of the solutions to the smaller problems will be the solution to the

original problem.

Consider the problem P(S) _= min{ cx: x c S}. Using the terminology of Geof-

frion and Marsten [4] let v[P(S)] denote the optimal objective function value for

the problem P(S). Let x" denote an incumbent for P(S) with objective value of v'.

Let PF(S) denote a relaxation of P(S) and let CL denote the candidate list. The

generic branch-and-bound algorithm may be stated as follows:

Input:

1. The problem, P(S).

Output:

1. The solution vector, x'.

2. The objective value corresponding to x', v'.(v" = oo implies that S = D.)

Procedure BAB;

Begin

initialize:

CL:= {P(S)}, v':= co;

while CL * D do

comment: select a candidate problem for analysis.

select P(U) E CL, CL:= CL \ {P(U)};

if F(U) has a feasible solution, then

A-5
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if v[p(U)j < v', then

let K be an optimum for F(U);

if X e S, then

X':= 3C, V':= C';

else

apply a heuristic to XK in an attempt to create x such that -e S and

cx < V;

if successful, then x'= k, v*:= cx;

comment: branching

create U, U2, ... , UP such that U~uU 2u ... uU; U and UnU, =

for all ix j e (1, 2 ... , p);

CL:= CLu{(P(U,), P(U,), ..... P(U))};

end if

end if

end if

end while

end.

A-6
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Ill. AN EXACT ALGORiTHM FOR THE CONSTRAINED
ASSIGNMENT PROBLEM

In this section we present a specialized branch-and-bound algorithm for the

constrained assignment problem. The constrained assignment problem is a binary

problem therefore at each node of the branch-and-bound tree either an assign-

ment is prohibited by fixing the corresponding variable to zero or a man is perma-

nently assigned to a job by fixing the corresponding variable to one.

3.1 The Relaxation

Let D denote the matrix corresponding to the coefficients in (5), x denote the

vector corresponding to the binary decision variables, c denote the vector of costs,

and r denote the vector of right-hand-side values for the side constraints. Then the

constrained assignment problem may be denoted as P(S) where S = {x: (2), (3),

(4), (5)). Let 1 denote a vector of 1's and ( = {x: (2), (3), (4), lDx < Ir). Then

P(S) is a valid relaxation for P(S). Application of the algorithm in [71 to solve the

singly constrained assignment problem will yeild a lower bound for P(S), the opti-

mal Lagrangean multiplier corresponding to the constraint 1Dx <_ r, and T e Y. If

T E S, then c•" is an upper bound for P(S).

Let S = (x: (2), (3), (4)). Recall that a Lagrangean dual for P(S) is the

problem max (L(a) :a > 0} where L(a) = min {cx+a(Dx-r): x e c -. We use the

optimal Lagrangean multiplier and K from the singly constrained algorithm to

form an advanced starting value for a. Let y denote the solution for L(a). Then

z = Dy-r is used to modify a for successive steps. A limited number of these steps

will be performed in this algorithm.

A-7



3.2 The Branching Rule

Consider any node in the branch-and-bound tree. If the relaxation, P( T) has

no feasible solution, then this node may be fathomed. Otherwise, an assignment

will be used to create the branches as illustrated in Figure 1.

Figure 1 here

For a given node in the branch-and-bound tree let F'= {(ij): x-'j = 1) and F0=

{(ij): x-j = 0}. Let U= {x E S': xjj = 1 for all (ij) E F1 and xij = 0 for all (ij) E FP}.

The relaxation solved at each node in the branch-and-bound tree is P(U) which is

a singly constrained assignment problem with some assignments fixed. Let T Ur,

T = {(ij) : xj = 1, (ij) v Fl), and t = ITI. Consider the t+1 subsets of U (U', U 2,

..U.) created in the following manner:

U, = { xc : xjj = 0, (i,,j,) E T), T, = T\{(i,,j,)};

U 2 = { x E U: Xi 1h = 1, xi:2 = 0, (i2 ,j2) E T,), T2 = T,\{(i2,j2);

U3 = { x E U: xij = 1, xiz2j = 1, xi3h = 0, (i3,j3) G T2}, T3 = T2\{(i3 ,j3)};

X= { x U: xii 1 ... xi,j,_ =1, xidj = 0, (it, jt) c T,_,};

{ x E U: xii = 1 for all (ij) E T} . Note that, U = UIuU 2u ... uU+,. and

iintT=-4' for all i - j.

Consider a node in the branch-and-bound tree having f, edges fixed at 1.

Then branching from this node will produce t+1 = n-f,+l new candidate problems.

From Figure 1 it can be seen that the last node (i.e., U,,,) need not be created

since it was examined at the parent node. Therefore, each branching produces t

candidate problems.

A-8
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3.3 The Candidate List

For our implementation of the branch-and-bound algorithm, ASSIGN+1 [7]

will be applied to P(U) and the results placed in the candidate list (i.e., a problem

is solved before it is placed in the candidate list). The motivation for placing solved

problem in the candidate list is that the solution for P(U) can be easily modified to

obtain an advanced starting solution for P(Ui,). Therefore solving the sequence of

problems P(U'T), P(U'), ... , P(U,) should require only a moderate amount of com-

putational effort. Hence, each entry in the CL consists of the five tuple (F0 , F} 3r,

•, u) where " e U, E <, v[P(Ui)], and u the optimal Lagrangean dual for the

singly constrained problem.

3.4 The Fathoming Rules

At any node p of the branch-and-bound tree let U, F', and F1 be as defined

in Section 3.2. Let M = (1, 2, 3,..., m}\ (i: (ij) E F1}, then the following rules may

be used to fathom a node. If

Z d + Z min(dý : (i,j) E A\F")>rk
(i, j) (E F1 i E M

for any k, then node p can be fathomed. That is, no selection of the free variables

will satisfy the kth side constraint. If

Z cj+ Z min(ci : (i, j) E A\ F°)> v"
(i,j) E F, i 6 M

then node p can be fathomed. That is, no selection of the free variables will result

in a solution superior to the incumbent.

If min (LDx: x E U I > jr, then node p can be fathomed. That is, no selection

of the free variables will satisfy all side constraints simultaneously. Let 0 be the

A-9
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best lower bound obtained for node p and e be the termination tolerance. We will

fathom node p if v" -fl <j ef. Using this rule with e = 0. 1 results in a solution from

the branch-and-bound procedure guaranteed to be within 10% of the optimum and

r = 0.01 produces a solution within 1% of an optimum.

3.5 The Algorithm

In this section we combine the information presented in Sections 3.1-3.4 to

construct the ASSIGN+s algorithm.

Input:

1. The cost vector, c.

2. The feasible region S.

3. The set of (man, job) pairs corresponding to eligible assignments, A.

4. Termination tolerance. E.

5. The maximum execution time, tmax.

6. The maximum number of Lagrangean relaxations to be solved at each node,

limit.

Output:

1. The solution vector, x'.

2. The objective value corresponding to x*, v*. (v" = co implies that the problem is

infeasible.)

Procedure ASSIGN+s;

Begin

initialize:

comment: Node 1 in the Branch-and-Bound tree.

v 0:= 0o, F:= 0, F1 := (D;

A-1O



IASSIGNPI(P(S), T, fl, u);

if f6 = -oo then terminate;

if X" r S then x':= X , v':= cK;

else LAGRANGE(3", #, u);

comment: Tolerance test for fathoming.

if v" - /5 <s e/5 then terminate;

CL:- {(FO,Fl, 3r,/5, u));

while CL ;t 4 do

SELECT A PROBLEM(F 0 ,Fl, T, j5, u);

BRANCH(CL, F°,F', X, u6, u);

end while

end.

procedure ASSIGNPI(P(C), T, fi, u);

Begin

initialize:

fi:= -00;

apply the ASSIGN+1 algorithm (Kennington, Mohammadi [1991]) to P(U);

if P(U) has a feasible solution then

let X be the best feasible solution found for P(U);

let f be the best lower bound found for P(U);

let u be the optimal Lagrangean dual for the singly constrained problem;

end if

end.

A-I1
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procedure SELECT A PROBLEM (F0 ,F', •T, f#, u);

Begin

select (FI,F 1 , K', f, u) E CL, CL:= CL \ (FP,F', 3,r5, u);

end.

procedure BRANCH(CL, FP,F', K', P5, u);

Begin

initialize:

t:= 0, G:= {(i,j): Kij = 1, (i,j) g F1 );

M:= (1, 2, 3, ... , m)\ {i: (i,j) e F'};

while G e (D do

comment: Fix a variable at zero.

let (i,,j,) e G, G:= G \ {(i,,j,)}, F°:= F0 u {(i,,j,));

ASSIGNPI(P(U), K, /, u);

if/ # -oo then

if E S and cX < v thenx':= T, v':= cK;

else LAGRANGE(K, #d, u);

comment: Tolerance test for fathoming.

if v' - t > Ep then CL:= CL u {(F°,F 1 , X3, ', u)1;

comment: Permanently assign man i, to job j,.

M:= M \ {i,), F':= F' u {(i1,j));

F0 := F0 u {(i,,j) : (i,j) e A for all j } u { (i,j,) : (i,j1) e A for all i }\ ((i,,j,)};

comment: Assignment polytope feasibility tests.

if • cij +>3 min(cij : (i, j) E A) > v' then return;
(i,j) e F, i e M

A-12



for k=1,...,s

if I dk+ Z min(dk: (i,j) E A)>rk then return;
(i, j) E F' i E M

end for

end if

end while

end.

Procedure LAGRANGE(3T, P, u);

Begin

initialize:

a:= u!, y:= K, t:= 1;

while (v*-/p > e1
3 and t < limit) do

z:= Dy-r;

for i=1,...,s

if Zk > 0, then ak:= 1.2 5ak;

if zk < 0, then ak:= 0. 7 5ak;

end for

let y be a solution for L(a) and P0:= max{fl, v[L(a)]};

if y E S and cy< v" then x':= y, v':= cy;

t:= t+1;

end while

end.

A-13



This branch-and-bound algorithm exploits the structure of the model (1)-(5)

in several ways. Permanent assignment of a man to a job implies that all other

variables involving this man and job may be fixed at zero. The relaxation was a

singly constrained assignment problem for which near optimal integer solutions

can be obtained using the results in Kennington and Mohammadi [8]. Special fath-

oming rules were developed which were based upon the assignment polytope.
i
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IV. EMPIRICAL ANALYSIS

The algorithm ASSIGN+s has been implemented in software and empirically

analyzed on an Alpha workstation by Digital Equipment Corporation. The code is

written in Fortran and uses ASSIGN+1 (see Kennington and Mohammadi [7]) to

solve the singly constrained assignment problems. ASSIGN+1 is an implementation

of the Lagrangean relaxation algorithm for sparse singly constrained assignment

problems.

We developed a test problem generator with the following inputs: (i) the

number of men, (ii) number of jobs for each man, (iii) the maximum cost, Z, (iv)

the number of side constraints, s, and (v) the side constraint multiplier, k. Both the

costs and the side constraint coefficients are uniformly distributed over the range

[0, C). We randomly generate a feasible assignment, , and set the right-hand-

side of the side constraints, r, to kD'. Obviously, as k becomes smaller, the feasi-

ble region becomes smaller and for sufficiently small k (x: (2), (3), (4), and (5)) is

usually empty.

The generator was used to generate two sets of 400x400 problems described

in Table 1. As Table 1 indicates, the problems generally become more difficult as

k becomes smaller and for k small enough the feasible region is empty. For all

runs, the stopping criteria used is E=10% and the % deviation reported in column 8

gives a guarantee on the deviation from optimality. All times are the CPU time and

exclude the time for both input and output. The run with problem number 2 having

k=0.4 was terminated after the candidate list grew to 25,000 entries. As we ex-

pected, there exists problems which cannot be solved in a reasonable amount of

time and storage using this approach. Tightly constrained problems having 48,000

A-15
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binary variables definitely stretches the capability of this software implementation

of our branch-and-bound algorithm.

Table 1 here

Tables 2 and 3 give our empirical results with 30 randomly generated assign-

ment problems with various sizes all having five side constraints. For all of the

problems tested we were able to find a solution guaranteed to be within 10% of an

optimal solution. The six smallest problems have 3,000 binary variables. Five of

these were solved in less than two minutes each and one required about six and

one-half minutes. The six largest problems had 75,000 binary variables and were

all solved in less than twenty one minutes each. The most difficult problems

(300x300) have 27,000 binary variables. Two of these six problems required eighty

minutes to solve. These two difficult problems also had very tight side constraints.

Tables 2 and 3 here

This work was motivated by models for assigning sailors to ships and for this

application the number of jobs always exceeds the number of sailors available.

Frequently the job list covers a longer period than the list of available sailors which

produces a large imbalance in n and m. Tables 4 and 5 present our empirical

results from solving 18 unbalanced assignment problems with five side constraints.

For the 300x600 problem with k=0.6 presented in Table 5, the run was terminated

due to candidate size limit. For all other test problems we were able to obtain a

solution within 10% of an optimum.

Tables 4 and 5 here

For all test problems we search for a solution within 10% of an optima. To

study the effect of the tolerance value on the performance of the algorithm we

A-16
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solved two 200x200 and two 200x400 problems with different tolerance values.

Figure 2 indicates that, as expected, a decrease in the tolerance value leads to an

increase in the execution time. For all four problems, a point was reached in which

a slight decrease in the tolerance resulted in a large increase in the solution time.

Figure 2 here
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V. SUMMARY AND CONCLUSIONS

We have presented a branch-and-bound algorithm for the constrained as-

signment problem. The algorithm is applicable for both balanced and unbalanced
S

assignment problems having inequality side constraints. The algorithm uses a spe-

cialized branching rule that exploits the underlying structure of the problem.

Bounds are obtained by solving a singly constrained assignment problem followed

by a few iterations with a Lagrangean relaxation.

We presented empirical results for both balanced and unbalanced problems

having five side constraints. For problems having 75,000 binary variables, solu-

0 tions guaranteed to be within 10% of an optima were obtained in less than twenty

one minutes on a Dec Alpha workstation. Our analysis indicated that as the side

constraints become tighter the execution time and number of branch-and-bound

nodes increases. For one of the 300x300 problems having 27,000 arcs, the execu-

tion time increased from about one minute to about eighty minutes as a result of

side constraint tightening. Our analysis also indicates that the performance of the

algorithm on unbalanced problems is generally better than its performance for the

balanced problems with the same number of binary variables. The Navy personnel

assignment problems which motivated this study are all unbalanced models.

S For problems of this type, having only a few side constraints, we believe that

this is the current best algorithm and software implementation available. Solutions

guaranteed to be within 10% of an optimum should be obtained for most problems

having fewer than five side constraints and fewer than 20,000 arcs. However, as

with any other branch-and-bound based procedure, we found difficult problems

which required an extraordinary amount of computer time.
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c. Problem #3 (200x400) d. Problem #4 (200x400)
with 1200 arcs with 1200 arcs

Figure 2. Plots of time versus the stopping tolerance for four problems.

A-22

0 III



Table 1. Empirical results from branch-and-bound algorithm for 400x400 assignment
problems with five side constraints (48,000 columns and 805 rows).

Prob. k # BAB # AP's Time % Node # of
Nodes Solved (mi.) LB UB Deviation Incumbent

1.0 189 216 0.71 5,270 5,309 0.74 13

0.9 244 1,958 4.74 5,505 5,768 4.78 22

0.8 274 2,119 3.96 6,999 7,271 3.89 78

0.7 952 8,288 12.66 10,991 11,725 6.68 859

0.6 14,142 124,222 166.00 20,820 22,713 9.09 13,943

0.5 4,214 35,362 45.39 47,446 50,343 6.11 4,157

0.4 1 2 0.00 problem has no feasible solution

1.0 224 503 1.66 5,370 5,559 3.52 2

0.9 253 1,801 4.57 5,830 6,132 5.23 34

0.8 700 5,434 9.26 7,815 8,373 7.13 492

0.7 3,114 25,786 42.93 12,510 13,649 9.10 2,938
* 2

0.6 3,094 28,694 40.92 23,606 25,188 6.70 2,871

0.5 3,505 29,642 31.45 50,939 54,690 7.36 3,340

0.4 25,0001 79,160 53.37 148,825 no feasible solution obtained

0.3 1 2 0.0 problem has no feasible solution

'terminated due to candidate list size limit.
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1. Introduction

II a Iit d 11 4'\\l at 0 t 1 jl 11 llV(l4 o 14 1i> . . 1 j~ 1-1-1 117H Ii t11 Id

1 0.Ik 4141 ('illi 114 a Pe)Clllillat oll of Ia hc ow, alal col iii illi, of I ll( 1I'v.~ hal 1111' ']it

.Ill 1)1014e1'V of I11 laic b Wlwill bc( m~aintained('( ill Iw 114 l('orizaI oh ol it' iilvci.s'. Ill

Ille ]It erall Un'. tlic peru 1111 al ion of thle P,~i i kniowni & a pi 14)1 f ap mbi. and I h lere arc
several algoithmsý for obtaininig a good pix'oi agenda.

II I P) I .I bluh -in an atid lkarIick .-) mtI rod 11ued I h1e4 pla4ýllw> 2 d " 1 410(41 li

folI ol)1ai11111t2 li4lI1 a I)4l111a~i441. lit 1972. -iliev addedii aii Iiina~ l w1 ON 1441 1111114'-

P13 a1l24J1jl 11 he, tanli hlock I mwv cawit''I IL- al2r I114'pic inl'lp'~i!i

piVol Iplofl*(luic( I P)] i.ee '(6 1)uff '2' piri'ii1 ul a sImlc alaorilhl for1 101eWhi1111 1*1i'2

114l' iuial iX so 1 hal jis, (iagoulal Ila, a hiiiiiiilllililrue' of, Zcros. Lrsla t al. '3.

d4~lUlv--e( 1114' po-ilbilit \ ofi d 511(liclrall'Y Zen l.,i\'4)1 ar],isin Ill P1l. aut lugQ '110ý-Ic il \ iIh!-

alit thlat avkiil- Ill], piold'eili. c'alld11'1c plm' ii'allijohial'Y pI'NTIolieh d i~~2au pivi,;

1414((1114 1 .4..lli 0~ (I t. *,I. rej orll that l~1 lit( P5. aluum1itm d1114(w4- niot al'ihn

1hi h a' ~ L mk)1 lli' acsoeial l WI i 'lla wric pivoilim1 alai11hlerP-I a~''tlii('( Nlak 4 '11ý' I hall I 'd

a Ir1aislposedl v'eI'sioli of' P3 whic pell r('lil e.- tilie mlatrlixN li110 all uppei 1 n1an pula tor . i,

withi row~ spikes extending- below lie diagonal, and suggested at technique which alter-

nates between the classic and transposed versions of P3 for reducing Ihe build-up) of

nonzeros during fact orizatilou. Sankaran ýTl. presented some new results oil optimal

spike coil hgiurat ion). usinig anl orderiniz hen rlt ic for doubleton column is.

All of these methods assume that tilie input mnatrix has at leas.-t one nonizei'o eit rv

ill ever\' row. Ini our work with specialized ])art it iornugmethlods for net works wvit 11;ide
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0111' zero I oleraijit'. Hlen ce. Ilihe usual pivot agenda algorithm ns fail. For probi lcmiit Mi

tli is class. we discovered thalo ittiuiitrical itistabl ilitles, frequleit lY orccur. Scab zig call

alleviate somle of these problems. but can nIot guarantee that tlw, dis (iicih wl v illI not

arise. When a row of all zero:, (or njear zeros) is discovered. on~e genjerallY replaces sonice

column of Q withI anl artificial columnii and thle simplex metho 1(1Is coit iiiied. This:

* idea is referred to as recover\' (i.e. the algorithmi recovers from numerical izistabijlit Y

1-1 14 object ive oflltin ilivest uatIonl is 1 o pre,ýenl recoverx' lirOCedll~rt''. hISili2 a \ali-_

ant of th l vitllerm an- Rarick P3' a lgoritlii i. for- thle case in which lie 11Iiii put at r;:.

*luis, one, or MON' rows,ý of, all Zen is. ()ur variatilon allows, decolznposinl I l 1 ]n I lII')

Smzaller blohcks. al)I Ipermilý >lit ercliaii 2t'- a jUioui thle unassifgn]ed rows- t( av'oid what

Erisiana f t al. refer to as at ,t rid ctuiralh, St ro pilrot. Recovery involves replaci ng SOMt

columnli of thle ilipli illliat FiX wt1111 anl appjropriate columni of thec ideiztit v mat nix. Tilt

dlifficult part is to determinle t ut' columnil to be replaced so t hat the curirent work- (i!

lhe pivot agenda canl be ret aiiied . An ai i vselectionl Of thle Col111111 to lit rel)laCet I1

caii leatd to failure of thie P'3 algooritlinis. This, failure occ'urs when it is dlisc'overedl t hat

thjere exists a rowv having all zelos In unassigned columns, or a structurally zero pivot

maY arise. Both of these conditions will he demonstrated in the example to follow.\

C'onsider the matrix illustrated] inl Figure Ia. whilch has all zeros in row 10. He-

placing column :3 by elO ( a column with a nonzero in row 10 and zeros elsewhere)

and applying the P:3 algorithm results in all zeros for unassigned columns in row :3.

as illustrated in Figure lb). This gave us the intuition to confine the column replace-

* merit to the lower triangular blocks. However. this does not completely solve the

problemn. Consider the matrix illustrated in Figure Ic. which also has all zeros in

row 10. Replacing columin 5 by elO. then applying the PN algorithml will introduce

a struct irally' zero pivot at locat ion t .ý I. as illust rated ill Figure III.
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SX A now zerc
X x X X X row
X X X X X
X x X X X X

X X X X X X X X
X X X x X X X X
X X X X X X x X X X
X X X X X X X X X X X X x X x X X X XX

(a) a matrix as permuted by P3, 1b) when replacing column 3 by e10.
column 10 is suggested for replacment.

x x xx xx x

x x x X x Xx Structurally

X X x X X x zero pivot
X X X X. X X/

x x X X Lx x Fill-inxx,,x xx xxX
xxx x1 xxL rx

X X X X X X X X XI X X X X X X X •Xxxxxxx,, xl xxx•x xxx•x

(c, a block as permuted by P3, (d) when replacing column 5 by sic.
column 10 is suggested for replacment.

Figure 1: ]Lxamplo., ),f' P:; f'ý,Ihit, dul,. Io illcorr"('l ,oln011 ,,11a'11,11l

2. A Pivot Agenda

Let B 1I, a l)ooleai, mairix ,,i or,'trI ii. and l't 1),, (lenlte Ihle ,j` ehleewi tf B.

A Piu(,l a2elilda for B I- a peornul al i I, of" lie lvrowS' ail colhllnm- of B whd," li i \, l t

n ialii xia hillg sonie de-irlabl( plropert . For this work tle desirabl(e troperiri> loe!VC,

triangular form. If this is imposs6ible. then we seek a near lower triangular form. Let

C and R denote the sequence of 71 columns and rows in a pivot agenda. That is. the

kP' column (row) in the permuted matrix is C.(T-i.).

A pivot agenda can be developed 1b using threo distinct procedures. One proce-

dure searchs for column singletons and places these columns at the elld of the pivol

agol(la. Anot her procedure sear(h-i fur row '1i1ilelolls and plae(t I l(' row\\ at the 1,,.-
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I I~ Ii iii I l ,-it I ttI t I IIII I I J I l tIAI C I 1 ! - I I I Iti Iii lt lii tt I I 11 , t I t :I

pr1oce-(IIul-eI alc r-epeale (.(I1 mi all (-ol1Ifmli ajil( lOwts of B are pelimicm lo t u 1u-111 1iia

Procedure: M ~-. v-iidi

Input :B. .

Output C. R

begin

- I: ... 1,I - I C 'T\

III.. j I Ii IIT - I kt

tl i / lit

.7 1 < I,. IT 1 ~}: Rc eord I Ile Zero I*0WVý fol tt\(\

lBmip.)Proc(i. (I. c. B. 1. J. C. R. .3):

enid while

end.
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* ~3. Column~i Singletons

\V (tCl II' (. all(l R, a- a jiall h-Il pl)\k aL~cII(IlI it 111ci c xPi" m all ll'(N I <I

ý'Iull Iillii C, = U;= . Lei 2I R .Z 1 I IQ "j * C. it

Ihli (o011 .')) Ikh l 1-ox to'i I I u I l aie i21 1 u' Illai L'-12 (I plriI jl ul (A U pII( \ul aL'cli(da

C0 10 fo lic ?i]eI l' ?. II I apolj)JIM'lili ow1/ w)(l11 lola1 lowci trialwillal

* ~(011-11111. 111 I hiS j)I'oUVE(lIIY1 WeI-epel'jf i liv scaiiih fol. (-ollillill ý'Il l u uf'l ll t i j-II 
11 a ll uWo

Procedure (Ii2

Input :. //.r. ..

Out put 1. J.J C. R.

begin

end,

4. Row Singletons

Let C anjd It' lbe any par-tial pivot agendla. anid let J, , :i (.J. C. I

ii).i For i ý 1R. if j! 1. then r-ow\I is c'alledl a rin .Inghlfoll. Placing a row\

singleton and the corr-espondiing -olumn to thle left most unlassigne(I posit ion of' thle

p~ivot agendca (I.c. C' = R-, = () for t liesniallce-t r) restiltcs iii appeli(lilig one a(lHlitiunal
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Searchi fol rowC sI~l lplllý (all lhe lEJFreChlIeu miat llleiat icallY aý f~llovw:

Procedure:RiSi.,

Input :ii, ii.r.1 T

Output : .l.JT.C. R.

begin

* whloiiie( !"T < < ii

IT. - I -E

Cill whl It

end.

I-oxv, 6. ¶ 1!Il. alli 12 Ill Ill l ie 'l> 1wi UluW ro l. of tie peIIlIlli d Illa inx. 'I lw pl'11i lit i

5. The Bumip

After app]lviIig- ihe (uL.'•mý_,] allti Row..Singi procedures. the remainling rows'.

I < I n.~ I R). anl colthininI. jj : < j < ii.j ý' C). will either have 7,>I

0 and ýI, > 1. or- = U. FWr tlii, sect ion. we assume that 1 ,7,j,' # (0. Thiewu

remaining rows and columns~will form a nowt ilialgigar sect oiou of t lie imernutedl matrlix.

called thie bamlii .
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COL9 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 2C

ROW iJi R
1 1lo x

2 10 X
318 0 XX X X XX XX X XX x X X X
418 0 XX XX XX XX XX XX xx X
518 0 XX XX XX XX XX xx X X X
6 10 X
7 90 XX X XX XX X X

S3 0 X x X
9 10 X

10 30 X X x
11 1 0 X
12 1 0 X
13 30 X X X
14 50 X XX x X
158e0 X X XX X X X x X
16 20 X X
17 9 0 X X X X X X X X X
18 30 X X X

19 70 X X XX X X x X
20C4 0 X XX xX

COL* 2 23 45 6 78 9 10 111213 14 151617 1819 20

II 1 1 5 7 4 7 S 5 7 4 7 10 12 S 6 6 6 5 5 8
* C 00 0 00 00 00 0 00t000 0 0 00

Figure 2: "Ill,1 bo)I'aii m1ai nx.

We ccl a p-1)411 iiatllull of Owi 1in rov:- anld collumnll th1a il Y\Id 1'tlilk it

A t4- a 'll]I llit' t1) a 1 (',f111111 al lol 'C - ldit 4Xolf11f l al~A wlo olilt'f flilal. \% f'Ic v l 11 Fofi It,

114' ll~ax]Illulli l011l) Of I'M. silli±Ieto1Iý- whelei Iteiipoiiral1Yi-vlellovedfI ol I1)1 ht ji llic

Let 1`0J) = !t: IE 1.,. 0 < 1J; ! k}; .. Which iý. called tiw V`' order hilly bmnc/mn ,

column J. For a given k. determine f, for every column in the bumip. If Ilie max\imumi

tk is greater than one. select the corresp~ondling column for temporary removal usinti

lie maximnum ýII to break- t ie,. If the( maximui-m 1j. equals one. only one row wvill be

affected bY the temiporarY remloval Of HIV li clumni. 1For this case. Increase A- to t he

minimum 1,7} greater thaii A- and repeat the process,. Let S denote the sequence of'

columns whlji] are I emlporarilY r'em oved. I sjpke. i..A col umni select oion m1et 110(1 IIsli -
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COL# 6 9 11 12 3 4 5 7 8 iC 13 14 15 16 17 18 19 2C 1 2
POW I P

S 60 6 X
9 0 9 x bump

21 0 11 x
12 0 12 x
324 0 X X X X X XX X X X X X XX X XX X
414 0 x x x x x x x x x x x x x x x x x x
5134 0 X X X X X X X X X X X X X X X X X X1

77 c x x x x x x x x x

8 2 0 x x x
10 3 0 X x x
13 3 0 x x x
14 4 0 X x x x x

15 6 0 X x x x x x x x
16 2 0 x x

17 5 0 x x x x x x x x x
18 2 0 x x x

19 4 0 X X x x x x x
20 3 0 Xx x x

1 0 1 x
2 0 2 x

COL# 6 9 11 12 3 4 57 8 10 13 14 15 16 17 18 19 2C 1 2
I11 0 C' 0 0 5 7 4 5 5 4 12 5 6 6 6 5 5 8 0 0

C 6 911120 0 0 0 0 0 0 0 0 0 0 c 0 0 1 2

Ei 2 TK C 1 0 0 0 0 2 0 0 1 0 1 0 1

Figure 3: 'li, maii-ix afiD i ail,, 1 p I i, • , S, 1,"Il a I Id(1 llx _.i)i j,, plc(,.d i],-I .

dic• tl lY t'i lli'lio~ll c'all heC ,c',,rilwd, 11lwa i, lllalicallY a, t'ollkm,\\>

Procedure ": . 'IA//.

input " /.. u.j.t'. .S.

* Output"/...

begin

A, - {6: I < ./:s1 ,. i• '..iS : , C.-5

while I m = I k A, o) (to

for (j E °) do tE.jj) : i 1,- 0 < J < A-}1:

in m ax{\ (J): j E .k':

if( n = I )thiil

S.'-{.): I < -< /I. t kjJi:

1.•,iin{J,, A. < 7i,. ' . < < u}:

end if

B-10
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a I I I it x

end.

0 Block

* "

Figure 4: Bo pmi j{irT ioil (or a huiiip.

It p,--i,. tli, IromIp i- oc<IIio.p-,(l ir•to a s'mall iiiiher of WlockI c((oii.<i((, lx

lOW e'I coi;Sl~ l i"'( llpllc)llt'tl . A ll ex.a;'llllpic of tll' S rii lir. 1,'11t11-( • i u I alc, III "I-lallc 1.

\\i inJ (a block. o il]\ tle spiki'v arc' p'rmite Io havey a zero on t lthe diagoial.. 'Ih.

bump processing tec'hni(que uses the AlaxTallY procedure for spike sele]c ion. It beginis

by setting k to the minimum '7T]. A column is selected. using the .\axTalhx1 proce-

dure. removed from the bump. and assigned to the spike sequence S. This process is

* repeated until at least one row singlet on is obtained. If the row singleton is unique.

the corresponding pivot is placed iII C.( R, ). Otherwise k is set to 1. a columnll.

is then selected using thel MaxTall.l procedure andi lplaced in C. . Then one of thlie

* row sinletons that has a nonizero eirtv inI column . is selected. aind placed in 'R . If

B-il
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I-g ic 1ie Ilial olict Wc lld\.e Ih lit) ty tu iiiV It lacc 'q Ili II \Iii

agenda.I ,nldn all il1c sp~ikes ino he 1pivot aglenda isolates a 1,1Itwk. an~ldc omtJI-

I)osc(, I lie IuIIlIIII into sIiiallci' hlol0(. 'Fll( f)Ituvt is epealedl Itur I hcI(Ijdiii ift al Ionl ol

('dul blockt. It' B hit, di i1o\ of' all Zeoi. 01 olmilli of, all zqoý,. i.e,. !1IT = 0.

l ell I lhe dtf-H-ctl lo\\e], 1I .aal~ila, licl III.( ]e n1ol achlevailcl. 1' tIh]- 1'- licmoveiel.

a Ie(CoV('1V 1,1" uelilic. \\-IIlI( 11hý de.'.eIIltetl In dic lie xt sect ion. w~il!le I,( nvoked~. "I lif-

0 1)I1111]) ])1-ocessilig cani be dleý(.-Ibedl mat hiemnal ielvas follows.!:

Procedure : JBimip)-i-o

Input :. if. B. 1.I.J. 27.

* ~Out put . B. 1. IT. C~. 2ý.

begin

(- Wi S5 -

1 . 1iiii11 J., IT = o'. I < -

I I IT I7 ,.<'<i r, *Y 1 C licii Rccttxyp] i A. ii. If. B.1. C. RZ.

whlile' I . > I I (l IeiiIovalilvY leiliove a sevl of, coliiiiii),

M ax- all.-1 . 1' 1.C.. S. I.

0 ~eiil while

.- : 1J,) = I 1 I < I } ? : / recor-d the r~ow\ singletons*

while (.F o k Ii > 0) do

if( i.Fý I )thenr / a uniqiie row singleton*/

C' - j E ,: R1,'- -F:

j4: Tk\i V k E I: I., c- +:u*-e 1:
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St

q - qI- 1:

I i

if q. > 0 1 . 1 1,_1 I! 11 1hd a, pkc.Ito li. a e.i:

C, S, R .. 1j (0: jl~ll /!.

wl'I F xi"

7 i l,',, ,, . lici iicu __ . B. .. C. 7?. S.2.:

('1( while

end.

*('o,•'Ider tho permulted mlalrix illu-traied ini Figure 3. In Ili]- matrix. thie mItia -
signed rows and columns form lhe bump. I'sing the MaxTaliy procedure. column

13 was selected for temporary removal from the bump. This removal introduced two

row singletons. rows ,, and 18. Using the .laxTally procedure, column 4 was selected

to be assigned to C6. and row S was selected to be assigned to R., This assignment

introduced a new row singleton. row 13. Similarly. rows 20 and 1:3 were assigned

1 RV7 alid "l,. whe1re t1l1e eorrespolidiii 1 columns and the Order of ilacemlivill t were

B-13
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COL# 6 9 11 12 3 4 5 17 6 1C 14 15 16 17 18 19 20 1.3 1 2
ROW IJI A

6 0 6 X

9 0 9 X
11 0 11 X
12 0 12 X

313 0 X X X X X X X X X X X x X X X X X Si
413 0 X X X X X X XX X X X X X X X X S

513 0 X XX X X X X X X X XX X X X X X S

7 6 0 X X X X X X X X S
* 10 X S

10 3 0 X X X 3
13 2 0 X S

14 3 0 X X X X S
15 50 X X X X X X x S
16 2 0 X X
17 4 0 X X X X X X X X $

is 1 0 X x S
19 3 0 X X X X 2S
20 2 0 X X$S

1 0 1

2 0 2 X
COL# 6 9 11 12 3 4 5 7 6 10 14 15 16 17 19 19 20 13 1 2

I11 0 0 0 G 5 7 4 S 5 4 5 6 6 6 5 5 6 C 0 0

C 6 91112 C G 0 C C C C C C- C 0 C 0 C 1 2
K= T'I 0 i C 0 0 00 0 0 1 0 0

K= 2 TT 2 1
After including column 4 and row e into the agenda.

K. TI 0 0 0 0 0 0 0 0 0 1 0 1

K= 2 TF 1 4
Aft-r±.u::c~~ ~ o Ttt~ ;f±

K. 1 T 0K C 00CC 1 0 2 0 1 0

Figure 5: Pr•w,,c-iii! Ow, blimp, all,,l r,,iovil,_, 'oliumn 13 1a- ;1 ,))Ik,.

N"1inec to 1(61 = 2. (1.(-. ilhe lllll, of roxw ý,ilglelo >llý ilia, have lmolzen), ('1011(•- i11

coliim 16 iJ!" 2. (,ile spike (al lie placeod Itllo the pivot agenidai. Sil,'(u clllill 13

wa- the only spike. incl1diigna ii ]nl o 11he pivot agenda decomposed t l(' bunm iilt),, I W,

small blocks. a, illustrated in Figure G. Since mniniiimin l J = I fulr the reiliaill ing

rows. the Row.Singl procedure is invoked to assign these row singletons to the pivol

agenda. The resuhting matrix is .hown in Figure 7. Since minimum ýJjl is now greater

than one. the BunipProc procedure was invoked again, and t lhe resulting mat rix i,

illustrated in Figure 8. By processing the bump. the number of nonzero entrie- above

the diagonal was reduced to only fifteen entries which are confined to four spike, i),

two block,.
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COLP 6 9 11 12 4 2C162 35s e ic14 Il151718 19 1 2
ROW li,

6 C 6 X

9 09 X

11 0 11 X
12 012. X

20 0 20 X X X X

13 013 XX X
16 0 16 X X
310 O X X X XX X XX X XX X XX X XX X1

* 410 0 X XX X 'X X X X X X X X X X X X X X I
510 O X X X X X X X X X X X X XX X X X

7 740 X X X XX X X X X
10 20 .X X X
14 1 0 X XX X X

* 15 S 0 X X X XX X X X
17 40 X XX X X X X X X
is 1810 X X X
19 30 X X X X X-X X
1 01 X
2 0 2 X

COL# 6 9 111Z4 2C16 13 3 57810 14 1517 1819 1 2

Ii 0 0 0 C C C 0 C 5 4 S5S 4 5 6 6 5 S 0 C
C 6 9 11 12 4 20 16 213 0 C 0 0 0 0 0 0 0 0 1 2

Figure 6: '1 mi- iia ix al '1'iohinpo,,mL2 a block.

6. Row Recovery

\\heii fliiý o((lnr". i11e tla,ýi Il('dlciaija~-lianik P3: al-orithini f'aik. Ilii fli- ccilo.

Nve presenit Ihlec('vr alaori-tlowi iw \'iic- 6'limUl( that I lie jIrescri ed lowel 'V jaligl~lp.a

forml is alt ai ha bl(. whljct jilt l'o(IUlCln a l'el)Ia('emncit coltinlin hav'ing a sin~g)(, h11OW61o

entry. The ingenuitY is inl the selec'tion of the basic column to lbe replacedl.

Let - = {1 I < I <_ o-J = c,}. Lei e, denote the I"' column of all ideniit it

matrix. Based oin the st ructutre of the original matrix. recovery can bec done at three

different stages of the algorithm.

The first case for recov'ery occiirs when- there exists at least One( Zerok t'o\\. and all

the r'emai ning row', have 1 eeli assigil6'(l Siin'e o1niY it - 2! ivot, h ave ' heeI I a''-Mwi td.
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SCOL# 6 9 11 12 4 20 16 13 14 18 7 3 5 0 10 15 17 19 1 2

ROW IJil R
6 0 6 x

9 0 9 X
11 0 11 X

12 012 X8

20 0 20 X X X
013 0 13 XX

16 0 16 XX

A 14 0 14 xX X x X X
18 0 18 X X X
10 0 10 iX x X

3 7 0 X X X XIX X X X X X X X X X X X X X
4 7 0 X X x X X X X X X x X X X X X X X XX

5 7 0 X X X Xx IX X X X X X X X X X X X X,
7 3 0 X X, X X X X X XXI

i5 4 0 X X X X X X X X I

S~I
17 4 0 X X X X, x x x x X
19 3 0 X X X. x x X X1X

1 0 1 x

2 0 2 X
COLV 6 9 11 12 4 20 16 13 14 18 7 3 5 81 0 15 17 19 1 2

II 0 0 0 0 0 0 0 0 0 0 0 5 4 5 4 6 6 5 0 0
C 6 9 11 12 4 20 16 13 14 18 7 0 0 0 0 0 0 0 1 2

Figure 7: 1h,' nal rix afior appl)iyill,_ I lho Rowl _iiol proc(Edutl, fi~r I h,- ,,coid 1ira,4.

7. 1 = 0 for di, relalailiag cohiiiii. alMl, ii is clear thal thlws(- (olllill•s 5,Iuld h,

rlV)lacded. I(eov4.\.% t'rhi lhib caý' (aln lbc iialheinalicaliy described a, t'oll,,w-:

Procedure: -Ierxzj

Input : -. o. e.. B. 1. 3.

* Output 1/.C. rx...

begin

•, --. 5 c: -" -< A. < C.k '-

replace column j of B by e,:

end.

This case is illustrated in Figure 9.

The second case for recovery occurs when there exists a zero row in the middle of

processing the bump. The matrices permuted by the P3 algorithm have the interesting

property of spike', appearing as properlY nested sels. for more delail- see Arioli 0

B-16



COL# 6 9 11 12 4 20 16 13 14 18 15 10 8 5 3 19 17 1 2

ROW lIJ R
6 C 6 x

9 09 x

11 0 11 x

12 0 12 X
S 0 a x

20 0 20 xX x IX

13 013 XX x

16 01 itxx

14 0 14 X IX X X x

1801 is X I X x

10 0 10 Xx x
19 019 xx I X X x x

7 0 7 X x X X x tx X!I

17 017 xX i x x xxx Z x 1

3 03 X XX XX Xx XX XX X X X.

4C 0 4 X X XXIX X XX X X XX XX XXXX

I

0 0 0 0

C 9113124 2C16 1314 18 715 10 85 319 17 12

Figure 8: '1 lit, mi i-iix alter im lsj~f th ]a,, blimip.

* a!. '1. A 'pikc Ila- u 1w ll fen ir liiý imVCC V(IV Case. WhII fc oychJ l~ u1(ie 1i!1(

I, aIvad\.' IeI)la((d hY 111tc' a p rplulfflct (U~l~lllll of thw l(1(~1 mi ial lix. ~W e\t'i

1hle ;w(N01 (I ac calIlW be 111(11 llal iralkI de~cri bedl aý follow".,:

Procedure : flecover-?

Input : I,. ii. B. 1T.S. -':.

Output v. uB. C.R..S.

0 begin

* replace columiij of B bY e,:

end

This case is illustrated hi Faiiure 10.
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COL# 1 2 3 4 5 6 7 8 9 IC 1i 12 13 14 15 1E 17 18 19 2C

ROW )J J R
1 0 1 X X X
2 0 2 X X X

0 3 X X X
4 0 4
5 0 5

6 0 6 X

9 0 7 x

9 0 9 X X x x
10 0 10 X X X x
11 0 11 X X
12 0 12 X X X X X X X X X X X X
13 0 13 X
14 0 14 X
15 0 15 X

I 16 016 X XX X XX X XX X X X X

17 017 XX X X X X X X X X x x
18 0 18 I I X I X X X I I X I I I

19 0 19 x X X X I X x x X X X X x
20 0 20 X X X X X X X X X X X X X

COL# 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

III 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
C 1 2 3 0 0 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Figure 9: .\, xa il,. PC i,\ev o".,ia I.

"I[q I l]l,- I 11 d 'a- . lt(,] It',( ovl'\ 'm ('11"- w [ilt'l I~(]• Iw i xim q - ii rox\o l it l 1 lit- ('11d[ k~i

IW*, •- i1 III,- 1,1111,1p. V m ,l : l i r. - c,, (. Iiwl,'', al, .'-- - $ m iiý--W~lwd •,,lIl11lL- ;.m d, i,

.,p)ik(- ha,- .hliQ li'-.c(,i\(i&l 111al will l wt'' lii placed 1il1c, lhe l ~i\U, aei:,t. Similar i,,

tlhc Secold'ca4X I iI Slik, ' is alwayvs 1(olaceNI 1 i h,' aI)I)rolpiial(' Coliiiiiii of I hif ileiw' iv

iiiatlrix fjiý,_, proce.duri •,i? I ulq-,I,2. i ' -/lll. w ,i will 'eaCi d .it IllanI,, 1, si,•ia it)

lhe first cas,, whliere 1procdm<ii Roov'i -,1 will Ie invokedl. 1-hi-w, ca>e. i, lh-ral e1 iII

I-iguiri II.

7. Summary and Conclusions

\We believe that the ideas presented in this manuscript close a gap in t',e literal ure

concerning the preassigned pivot agenda algorithms. All of these algorithms assume

an) inpul matrix which is nonsinl ular. that niay not be tle case everyv lic t lhese

procedure-, are called. ThiP maUi ri(l)l prisevnt. a Variaii of 01 P3 wlihi les1ll- iII a
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COL, 7 13 11 16 17 4 20 19 18 3 51 0 15 6 1 2 9 9 12 14
stow IJI R%

7 0 7 X
10 6 X0XXXXI
11 0 11 x

16 0 16 X
17 0 17 x
16 0 6 X X x
19 0 19 X X x X
13 0 13 X X X S
i 3 0 1sX XX XXX S

3 4 0 X X x X X x X X x X x X S
4 4 0 x X X x X x X X X x X x X S
5 3 0 X X X X X X X X X X x S

15 1 0 X X S

1 0 1
2 0 2 S X
8 08 I

12 0 12 X
14 0 14 x
20 0 0

COL# 7 13 11 16 17 4 20 19 18: 3 5 10 15 6 1 2 8 9 12 14
11 0 000000 0 2 3 34 0 0 0 0 0 00

C 7 13 11 16 17 4 20 19 18 0 0 0 0 0 1 2 8 9 12 14

Figure 10: An tx-mimplo of recovorv I'a.,,o 2.

relhal -le and efficient method 10 , recover fr'1, n all types of numerical instalilit ie. 1 he-,.

ideas can Ib eai ly adapted for thle ale<, tlim, of '11. [31. ., (11( [71.
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COL# 1 2 3 4 5 f 7 8 9 1( 121 : 13 14 15 16 17 18 19 20
ROW I j p

1 0 1 X X X S

2 C 2 X X X s
3 0 3 X X X s
4 0 0
5 0 0

6 0 0

7 0 7 S X
8 0 8 S X X
9 0 9 x x S x x

10 0 10 x x x S x x

11 0 11 x S x x
12 0 12 X X X X X S X X X X X X
13 0 13 x x
14 0 14 x x
15 015 x x
16 016 x xx x x s x x x x x x x
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18e0 18 x xx x x S $ x x x x x x x
19 0 19 x x x x X S x x x x x x x x
20 020 X X X X X S X X X X X X x x

COL# 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

I11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
C 1 2 3 0 0 0 7 8 9 IC 11 12 13 14 15 16 17 18 19 20

Figure 11: .\A ,vxampiv of rcovry ca,,, 3.

111('1 ri, Spar-(e M1l! ,-. 1Mal .I,,,/\,, ric(,A n1ya-/s.;.. \'U. 2. pp. :369![3..5

BF 1. liltt('rlI\. anid L. I.la(kII\. ('olln,1piionl of Li" Factori. of 1li Ba,1wi(-/, PC-

duc cihl-l I DBiiiii SimpI(h" lleraliuit-. .Joioi'nal of th, Opt, ,-0ou,1;I l1 .. (,,t!,

/'o , Vol/. -13. No. 5. pt. 50117-51,. 1992.

L5 . llellerlall. anld( 1). 1ldri,-' 'ilei,.ver-.iu \villi lhii ldor'as-i-,i, Iicu, IiPue-

(ldi1'.' .%- h M atn (It Ifl IpIo.a mi I,,,I q. VoL. 1. pp. 195-21(). 1P)71.

[61 E. Hellerman. and D. Rarick. --The Partitioned Preassigned Pivol Procedure

(P4).*' in D. J. Rose and R. A. WilloughbY. Eds. Spar.,, .Iatr,((., and Mil,,

* .Applicalion. pp. 67-76. Plenum Press. New York. 1972.

[7] J. K. Sankaran. --Some New Results Regarding Spikes and A Heuristic for Spike

('onsi rucioni.' hal/h ma/aacl IPrograumming. Vol. 61. pp.171-195. 199:3.

B-20

0 =.lm i m I Ii



0

* Distribution List

* Dr. Neal D. Glassman
Program Manager
AFOSR/NM
110 Duncan Avenue, Suite 100

* Boiling AFB, DC 20332-0001
(1 copy)

Marilyn J. McKee, Chief
Contract and Grant Administration Division
AFOSR/PKA
110 Duncan Avenue, Suite B115
Boiling AFB, DC 20332-0001
(6 copies)

0
Carol Voltner, Assistant Director
Office of Scientific Research
SMU

* Dallas, TX 75275
(1 copy)

0

0

c-1
0


